AETHER: EFFICIENT SERVING OF LARGE-SCALE VECTOR SEARCH WITH
SHARDED INDEXES

Zhenning Yang' Jeremy Flics' Jiaheng Lu'

ABSTRACT
Retrieval-Augmented Generation (RAG) is a popular technique for improving the reliability of Large Language
Models (LLMs) by reducing hallucination. Implementing this effectively often requires repeatedly searching
through large vector databases. At scale, these vector searches become a substantial computational bottleneck
for RAG-enabled LLM inference. In this project we introduce Aether, a prototype system that enhances search
efficiency across massive sharded datasets through scheduling optimizations and dynamic file management. Aether
is a highly adaptable system that is designed to scale across multi-tier memory systems, such as CXL-enabled
clusters. Through comprehensive evaluations across diverse workloads and under varying memory constraints,
we demonstrate that Aether significantly outperforms baseline approaches. Leveraging asynchronous I/O, our
scheduling optimizations achieve an average throughput improvement of 19.7% over their synchronous counterpart.
Additionally, dynamic index file management using a novel LFU+ caching policy outperforms traditional LRU by

14.5% in serving throughput.

1 INTRODUCTION

Large language models (LLMs)-based applications, such
as chatbots and Al-driven conversational agents (Caldarini
et al., 2022; Bozkurt, 2023), have become increasingly
prevalent. However, a critical issue with these models is
their tendency to produce “hallucinated” content— inac-
curate statements that may sound convincing, but is not
grounded in facts (Wang et al., 2023; Ye et al., 2023; Ton-
moy et al., 2024; Xu et al., 2024). This becomes problematic
when users rely on such generated information as a source
of knowledge for decision making. The primary reasons
behind this phenomenon include outdated training data and
inevitable information loss during the model training pro-
cess. Keeping the training data continuously updated while
maintaining data quality, is logistically challenging and prac-
tically infeasible. On the other hand, even with the most
up-to-date data, the LLMs will still require continuous fine-
tuning to be able to incorporate new information. This too
is not practical. Unavoidably, even state of the art models
such as GPT-4 (OpenAl, 2024) and Llama (Touvron et al.,
2023a;b), have a finite number of parameters. As such, they
alone will never be able to encapsulate the entirety of world
knowledge. (Minaee et al., 2024; Villalobos et al., 2022).

"Department of Computer Science and Engineering, Uni-
versity of Michigan, Ann Arbor, Michigan, USA. Correspon-
dence to: Zhenning Yang <znyang@umich.edu>, Jeremy Flics
<jflics@umich.edu>, Jiaheng Lu <jhlu@umich.edu>.

1.1 Retrieval-Augmented Generation

To mitigate these issues, retrieval-augmented generation
(RAG) frameworks have emerged (Borgeaud et al., 2022;
Lewis et al., 2020; Jiang et al., 2023; Huang & Huang, 2024;
Gao et al., 2024) as a powerful solution. RAG enhances
LLMs by integrating external data retrieval into the text
generation process, thereby grounding responses with ver-
ifiable information. Drawing a parallel to human memory
systems, comparing the long-term memory, which holds
basic and general knowledge, to the parameters of LLMs
(Sumers et al., 2024). Actively recalling previous expe-
riences allows humans to make more informed decisions
based on relevant past events. Unlike humans, LLMs lack
such capability on their own. They do not have the mecha-
nism to draw from specific past interactions; instead, their
responses are generated based solely on the datasets with
which they were trained on. As we delve into the mechan-
ics of RAG, the concept of vector similarity search plays a
crucial role, especially in how information is indexed and
retrieved effectively.

1.2 Vector Similarity Search

Embeddings in deep learning are numerical representations
of various data types, including text, images, and other
modalities, or they can be a combination of multiple modal-
ities, allowing DL models to process and analyze complex
and diverse information effectively. Vector similarity search
is essential, leveraging embeddings that capture the semantic
essence of data and enable meaningful comparisons through

Aether: Efficient Serving of Large-scale Vector Search with Sharded Indexes

Search top centroids
for each query

Top index files

> B »)

f—% Dataset
[Query |] 3 5 7 .
7 | 3
[Query 3] 5 6 3 . Index file for centroids

Index file

Figure 1. Vector search on sharded indexes

methods like k-nearest neighbors (KNN).

KNN is an exhaustive search method where the similar-
ity between items is determined by finding the k'" closest
vectors in the database to a given query vector. The close-
ness is often measured using Euclidean distance or cosine
similarity, with the latter being preferred in text-related ap-
plications for its focus on vector orientation. However, as
vector databases grow in size and dimensionality, KNN
becomes computationally intensive. One way to manage
this computational demand is to sacrifice exhaustiveness for
faster-running algorithms. This computation-accuracy trade
off has been well studied by, so called approximate nearest
neighbor (ANN) algorithms (Andoni et al., 2018). A typical
approach is to preprocess the entire dataset and generate an
index that is optimized for faster searching. To do this, we
used a sharded Inverted File Indexing (IVF) as described in
Section 1.3. Other popular ANN techniques are discussed
in Section 6.

Aside from approximation algorithms, more classical sys-
tems optimizations can be applied to vector similarity search.
Techniques like intelligent batching (Zhang et al., 2024),
careful execution planning (Jang et al., 2023), and maxi-
mizing concurrency (Wang et al., 2021) are all well studied.
These techniques are particularly suited for enhancing vec-
tor search processes.

1.3 Motivation

The motivation behind enhancing vector search capabili-
ties stems from the demand to scale up these systems to
handle vast external knowledge bases efficiently. The pri-
mary challenge in vector search lies in its extensive memory
requirements. Ideally, to achieve rapid vector search re-
sponses, index files should reside in fast memory such as
dynamic random-access memory (DRAM). Existing solu-
tions like Faiss (Douze et al., 2024; Johnson et al., 2017)
and Rummy (Zhang et al., 2024), utilizing GPUs compute
power to accelerate vector serach and vector query process-
ing. However, in the context of RAG-enabled LLMs, where
GPUs are predominantly occupied by model parameters,
alternative solutions are necessary.

Our proposed system, Aether, aims to efficiently handle
vector search across very large datasets. Traditionally, two
existing methods are used when dealing with large datasets
that cannot be fully loaded into fast memory. One method
involves using memory-mapped files to load only the signif-
icantly smaller index graph, while the data remains on disk.
However, this approach often results in slow response times
due to frequent disk reads and is not entirely index agnostic.

The other method involves sharding (Douze, 2020) the
dataset and indexing each shard individually, as shown in
Figure 1. We first apply clustering algorithms, such as k-
means, to partition the large dataset into smaller clusters and
their corresponding centroids. We then index these smaller
clusters and centroids. When a query is received, we ini-
tially search the centroid index to identify the top centroids
relevant to the query. These centroids direct us to specific
cluster index files for a more detailed search. We iterate
through a list of top index files, performing vector searches
sequentially. Finally, we merge and sort all retrieved data
points by their distances to the query, selecting the top-k re-
sults to return to the user. This method is index agnostic and
requires only a subset of index files at runtime, enhancing
memory efficiency.

Our system optimizes the serving of large-scale vector
searches for the sharded indexes, and specifically tailored
for applications like RAG-enabled LLMs, where it is crucial
that vector search and query processing do not compete for
limited GPU resources. We observed significant improve-
ments in both intra- and inter-batch response latency through
careful search planning and dynamic index file management.
Our key contributions in this project include:

* Development of a Prototype System: We developed
a prototype system designed for serving vector search
across large datasets using sharded indexes. The code
is open-source and available on https://github.
com/zyang37/VectorSearch_ShardIndex.

e Optimization of Throughput: We enhanced intra-
and inter-batch throughput through asynchronous in-
dex loading and dynamic index file management. A
solution that significantly outperform naive planning,

https://github.com/zyang37/VectorSearch_ShardIndex
https://github.com/zyang37/VectorSearch_ShardIndex

Aether: Efficient Serving of Large-scale Vector Search with Sharded Indexes

and can be generalized to multi-tier memory systems
like CXL-enabled cluster to further enhanced scalabil-

1ty.

* Comprehensive System Evaluation: We evaluated
our system across various workloads and under differ-
ent constraints. This included testing with batches that
had varying percentages of out-of-distribution (OOD)
queries and operating in environments with different
memory budgets.

2 SOLUTION

We proposed two main optimization strategies: intra-
optimization in Section 2.1, which focuses on single batch,
and inter-optimization in Section 2.2, which improves la-
tency for continuous serving. Lastly, we outline the overall
system design in Section 2.3 and we discuss each system
component in detail, explaining their functions, interactions,
and the roles they play in ensuring the overall system per-
formance.

2.1 Intra-Batch Planning

The centroid index serves as the initial access point for our
search, guiding us to the top centroid results which then
direct us to specific index files for a more detailed, fine-
grained search. In practice, we employ batch vector search,
and the retrieval results are naturally structured like the
search plan 1 (S1), as shown in Figure 2, where we have top
indexes correspond to each query. Following this, we can
immediately proceed with the fine-grained vector search,

[Queryl] 3 5 7

[Query 2] 7 | 3

[Query3] 5 6 3

Figure 2. Search plan 1 (S1)

search
1

S1

load
1

0 2 4 6 8 10
Time (s)

Figure 3. S1 latency breakdown for vector search for a single batch
of 10,000 queries, assuming sufficient system memory for all
required index files. The bottom bars represent the time spent
loading each index file, while the top bars indicate the time spent
searching an index file.

However, this naive search plan often results in slow re-

sponse times as shown in Figure 3. On one hand, batch vec-
tor search enhances speed by utilizing parallel processing
to handle multiple queries simultaneously. It also reduces
overhead by minimizing the frequency of data loading. Con-
sequently, batch processing proves more efficient, allowing
for the simultaneous and accelerated processing of multiple
queries compared to sequential processing. On the other
hand, search plan 1 introduces redundant loading of index
files. For instance, using Figure 2 as an example, during
the processing of query 1, we load index file 3 and perform
a vector search. Once completed, we proceed to the next
index file. While we accumulate retrieval results for query
1, memory constraints might force the eviction of some in-
dex files. Suppose index file 3 is evicted following a Least
Recently Used (LRU) policy, only to be required again for
query 2, having to re-load from the disk. This frequent swap-
ping, especially under tight memory constraints, exacerbates
further decreases the vector search performance.

Bl (2 1) (o2 (wr3)
Bl (o) (o)
()

O[e=D

Figure 4. Search plan 2 (S2)

To address both single query search and the redundancy in
index file loading, a revised approach involves restructuring
the search plan to batch queries that share common index
files, as illustrated in Figure 4. Before initiating the search,
we first identify opportunities for batching. For example, if
index file 3 is required for queries 1, 2, and 3, we batch these
queries together. This strategy reintroduces batch vector
processing, capitalizing on opportunities to process multiple
queries concurrently. Additionally, organizing index files in
the outer loop of the search process eliminates the need for
redundant loading. In the context of intra-batch, following
search plan 2 (S2) ensures that each top index file is loaded
and searched only once. Implementing this revised plan
has significantly improved response times compared to the
original naive search plan.

So far, our search and loading operations have been con-
ducted sequentially as blocking operations, shown at Fig-
ure 5. We’ve identified further opportunities for optimiza-
tion by leveraging asynchronous I/O. This approach al-
lows searching and loading to occur simultaneously without
blocking each other. For example, during a vector search,
the I/O system is typically underutilized. Meanwhile, the
next index file required according to the search plan can be
pre-loaded. If the loading of an index file completes before

Aether: Efficient Serving of Large-scale Vector Search with Sharded Indexes

S2
search

load

F AR
P T T

0.4 0.6 0.8
Time (s)

S2 + AsynclO
search

load

Figure 5. Latency breakdowns for S2 (top) and S2 with asyn-
chronous I/O (bottom).

the current search finishes, the next search can begin imme-
diately. If the loading is still in progress when the search
completes, only a minimal delay is necessary before initiat-
ing the next search. This overlapping of tasks significantly
reduces idle time or “bubbles” in the search pipeline.

Additionally, we’ve noticed that reordering the search plan
can further minimize these bubbles. By prioritizing index
files associated with larger query batches, we not only ex-
tend the search duration—allowing more time for index file
pre-fetching—but also set the stage for more efficient pro-
cessing of smaller batches later on. That means when we
eventually deal with index files linked to only a few queries,
these can occur almost back-to-back. The pre-fetching done
during the longer searches ensures that there is little to no
waiting time for loading the next index files, achieving better
latency (Figure 5).

2.2 Inter-Batch Memory Management

In the context of serving vector searches, there is an oppor-
tunity to dynamically adjust the placement of index files
based on their “temperature”, reflecting their current usage
rate. Initially, during the intra-batch phase, there is a pe-
riod of I/0 idleness at the very beginning, as the system
waits for the vector search of the centroid index to complete.
This delay is necessary to determine the top index files for
subsequent searches.

Furthermore, moving into the inter-batch phase, the system
does not always have a predefined search plan, allowing the
index manager to dynamically promote or demote index files
based on their temperature. We’ve implemented two key
policies for managing this: the traditional Least Recently
Used (LRU) and a modified version of Least Frequently
Used (LFU), which we term LFU+. Unlike traditional LFU,
which simply counts accesses, LFU+ adjusts the count by
the number of queries processed per index file. This mod-
ification better represents the actual importance of index

Query @ ‘ @ Top-k

batch results
Aether

) Identify top index files .
Dispatcher @ VSR Search Engine

Locality-aware Profile
@ batching @

latency
@ Update index
Index Manager J

temperature LOg Store

\Wom or demote index

Figure 6. Aether architecture: serving large-scale vector search
utilizing multi-tier memory, such as CXL-enabled clusters.

files, as a single large batch search on one index file might
be more significant than several single-query searches on
another.

This dynamic placement of index files has led to an small
enhancement in our intra-batch optimization strategy. When
reordering index searches, the system now prioritizes in-
dex files that are already loaded in DRAM (locality-aware),
followed by those associated with larger query batches, al-
lowing us to initiate searches as quickly as possible.

2.3 System Design

Aether is a framework for efficiently serving vector search
queries over large datasets. as shown in Figure 6. At a
high level, Aether efficiently batches requests, and searches
through sharded index files to find the top-k results for each
query. Users submit requests to the dispatcher which fig-
ures out which index files are needed for the search, and
batches the requests accordingly. Next, ANN searches are
conducted on a per-index file basis and returned to the user.
To do this efficiently, frequently used index files are loaded
into DRAM by the index manager. Throughout this entire
process, profile data is logged both to inform index file pop-
ularity rankings and to support experimental measurement.

A number of optimizations are made to improve the scala-
bility and performance of this process. First, as an offline
preprocessing step the corpus is sharded into index files
using k-means clustering. Then when a batch of queries
comes in, the most relevant index files are identified based
on the distance between the query vectors and the index file
centroids. Next, the dispatcher generates search plan for
the current batch. Whenever an index file is accessed, the
index manager updates its internal popularity rankings and
loads/evicts indexes accordingly.

Aether: Efficient Serving of Large-scale Vector Search with Sharded Indexes

2.3.1 Dispatcher

The Dispatcher handles incoming query batches and gen-
erating efficient search plans. It starts by taking in a query
batch and conducting a vector search over the centroid in-
dex to identify the top index files for each query. It then
identifies batching opportunities among queries within the
same batch, organizing the search plan such that the index
file is in the outer loop, and queries sharing the same index
file are batched together. The search order for index files is
strategically reordered: priority is given first to index files
already present in DRAM, and second to those with a larger
batch size, in order to minimize interruptions in the search
process. Ultimately, the Dispatcher outputs a search plan
for the current batch to the search engine, ensuring optimal
resource use and low response latency.

2.3.2 Search Engine

The Search Engine executes the search plan generated by the
Dispatcher. It first verifies the availability of the required
index file in DRAM. If the file is not already in DRAM,
the engine attempts to load it, pausing the search until the
file is fully loaded. If the file is already in DRAM or once
it is loaded, the engine proceeds with the vector search.
Throughout the search process, the engine keeps track of all
partial results and continuously updates the result matrix,
which has the shape of (NumQuery, k). This involves
concatenating partial results and sorting the retrieved data
points by their distance to the query, ensuring that only the
top-k results are retained. Once the process is complete, the
Search Engine returns the final sorted, topk results.

2.3.3 Index Manager

The Index Manager oversees index file operations, imple-
mented as a separate thread from the main process for asyn-
chronous handling. It operates primarily based on the search
plan provided for each batch, which details the specific in-
dex files needed for current queries, thus facilitating pre-
cise intra-batch optimization. When a search plan is active,
the Index Manager adheres strictly to it to manage index
files accordingly. However, in periods of inactivity with no
incoming requests, the Index Manager shifts its focus to
managing the index files based on their popularity rankings.
This involves maintaining an in-memory cache of index files
and adjusting their presence in DRAM based on a defined
policy such as Least Recently Used (LRU), Least Frequently
Used (LFU), or enhanced versions of these policies (LRU+
or LFU+). This dynamic approach allows the Index Man-
ager to optimize resource use effectively, ensuring that the
system is prepared for new queries as they arrive.

2.34 Log Store

The Log Store is a component designed to capture and store
performance logs specifically related to the loading and
storing actions of index files. This data serves two main
purposes: it provides a quantitative basis for experimental
measurement, allowing for the assessment and improvement
of the system’s performance, and it acts as a source of infor-
mation for the Index Manager. By analyzing these logs, the
Index Manager can refine the index file ranking, optimizing
the way index files are placed based on actual usage and per-
formance metrics. This ensures that the system’s memory
management adapts dynamically to the changing demands
and patterns observed during operation.

3 EVALUATION

We conducted a thorough evaluation of our system using
synthetic datasets. The evaluation involved a dataset with
1,000 clusters, implying the creation of 1,000 distinct shards,
each indexed using the Inverted File (IVF) method. Each
cluster comprised 10,000 embeddings, with each embed-
ding having a dimensionality of 128. To generate these
embeddings, we used a Gaussian distribution, assigning
different mean values to each cluster to minimize overlap
among them. Furthermore, we employed a smaller standard
deviation in the distribution to further reduce the overlap,
ensuring that each cluster’s embeddings were distinct and
clearly separable from those of other clusters.

3.1 Experiment Setup

The evaluation is structured around a two-tier memory setup,
consisting of DRAM and disk storage. When an index file is
required for a query, the system first checks if it is available
in DRAM. If the file is not in DRAM, it is loaded from disk
into DRAM before vector search. If the file is already in
DRAM, vector search is executed immediately.

We simulate memory constraints by defining the maximum
number of index files that DRAM can hold. When capac-
ity is exceeded, files are swapped in and out based on ei-
ther the LRU or LFU+ eviction policies, depending on the
specified system configuration. This approach allows us to
evaluate the system’s performance under various memory
constraints.

Users can specify the number of queries in each batch. We
also define the percentage of these queries that are generated
from a different Gaussian distribution, identifying these as
out-of-distribution (OOD) queries. This setup allows us to
test the system’s robustness in handling anomalies queries in
a batch during vector searches. Query batches are generated
according to user specifications, including the top-k results
to return and the “nprobe” parameter, which indicates the
number of top index files to examine during the search.

Aether: Efficient Serving of Large-scale Vector Search with Sharded Indexes

Table 1. Latency for generating S2

Batch size | Planning latency (s)
10 0.000079
100 0.00031
1000 0.0024
10,000 0.023
100,000 0.23
1000,000 241

Inter-batch evaluation involves defining the number of re-
quests, with each request containing a randomly determined
percentage of OOD queries. Users select an eviction pol-
icy—either LRU or LFU+—to manage the memory effec-
tively.

S1
load search

S2
load search

load search

S2 + AsynclO

0 1 2 3 4 5 6 7 8 9 10
Time (s)

Figure 7. Latency breakdowns for S1 (top), S2 (middle) and S2
with asynchronous I/O (bottom). Single query batch with 10,000
queries, returning top 10 data points per query, with the “nprobe”
parameter set to 10.

3.2 Search Plan Generation Latency

In the evaluation section of our study, we observed that
vector search results are inherently structured similarly to S1.
Therefore, following the centroid search, we immediately
have access to S1 without the need for additional time-
consuming processes such as those required for generating
S2. This allows us to initiate the fine-grained search almost
instantaneously. To this end, we have profiled the time
required to generate S2 (Table 1), which includes not only
the time needed to reverse the structure of S1 but also the
time necessary to reorder the results based on batch size and
the locality of the index files.

3.3 Tight Memory Budgets

We assessed the intra-batch throughput (queries per second)
under various memory budgets, with the results depicted

in Figure 8. We find that the performance of S2 is largely
independent of the memory budgets, provided that the sys-
tem can accommodate at least one index file necessary for
the current search. This feature is particularly beneficial in
environments with limited memory, as it ensures efficient
utilization of available resources. Once a search involving a
specific index file is completed, that index file can be safely
evicted from memory, as it is no longer required for the
remainder of the current batch. This strategy helps in man-
aging memory more effectively by freeing up space that can
be used for loading other necessary index files.

Additionally, S2’s integration with asynchronous I/O (Async
I0) can take advantage of higher memory capacities by pre-
loading more index files, although benefits plateau once
memory availability exceeds the maximum required for ac-
tive searches. On average, S2 with Async IO is 19.7% faster
than S2. In contrast, S1 consistently underperforms due
to its excessive redundant index file loading and inefficient
processing of single queries.

leq = S1 — 52 S2+AsynclO

2.5 ;

2.0 A _~ —

1.5 1

1.0 1

1
1
1
1
1
1
1
1
1
1
i
0.5 |
1

Throughput (query / sec)

1

0.0 T T T T T f T
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Memory budget for the current batch

Figure 8. Throughputs for S1, S2, and S2 with Async I/O under
varying memory budgets. The vertical dotted line indicates a 100%
memory budget for the current batch. For example, if executing
search plan requires 100 index files for the current batch, a 100%
memory budget means the system has sufficient memory to hold
all 100 index files without needing to swap. This is why the
throughputs for all search plans plateau at this point.

3.4 Out-of-Distribution Query-batch

While S2’s performance is generally independent of memory
constraints, it becomes sensitive when handling batches
that contain Out-of-Distribution (OOD) queries as shown in
Figure 9. OOD queries often require a significantly different
subset of index files compared to typical queries, which
drastically reduces the batching opportunities. This leads to
an increase in single query searches, which are less efficient.
Although implementing S2 with asynchronous I/O (Async
I0) does achieve a slightly higher throughput, the inefficient
single query searches still dominate overall performance,
with only 2% higher throughput compared to normal S2.

Aether: Efficient Serving of Large-scale Vector Search with Sharded Indexes

— S1 — 52 S2+AsynclO

led

2.5 1

2.0 A

1.5 1

1.0 1

0.5 1

Throughput (query / sec)

0.0 T T T T T T
0 1 2 3 4 5

Percentage of OOD queries in a batch

Figure 9. Throughputs for S1, S2, and S2 with Async I/O under
diverse workloads containing OOD queries.

3.5 Serving Throughput

In assessing continuous vector search serving performance,
we evaluated two caching policies, Least Recently Used
(LRU) and the enhanced Least Frequently Used (LFU+), as
depicted in Figure 10. Our test involved running through
100 requests, each containing 10,000 queries, into which
we randomly injected OOD queries to simulate anomaly
within realistic workloads. Our findings indicate that LFU+,
through dynamic index file promotion and demotion, pro-
cessed all 100 requests 14.5% faster than LRU.

led

N
5
1

N
=}
1

=
ol
1

g
o
1

— | RU
LFU+

0 20 40 60 80 100 120 140
Time (s)

Throughput (query / sec)

©
n
1

IR R G ——
RN

o
o

Figure 10. Throughputs for processing 100 requests using two dif-
ferent policies, LRU and LFU+, in S2 with Async I/O.

4 LIMITATIONS

While Aether breaks ground on scalable vector searching
systems, it has some limitations that, if addressed, could
substantially improve its generality and performance. The
first of these is a more robust experimental setup. Specif-
ically, due to resource constraints, it was challenging to
model realistic workloads- especially those coming from
multiple distributions of data. As evidenced by Figure 9 the
performance of S2 is substantially impacted by out of dis-
tribution queries. This was hard for us to measure because
it is truly a problem that appears at a larger scale than our

hardware allowed. In our case, generating synthetic data
from multiple distributions almost immediately led to each
query batch using every index file, thus making our caching
strategy a moot point. In addition, we assume clusters are
approximately the same size which might not be the case
when it comes to large realistic datasets.

5 FUTURE WORK

Beyond just addressing its limitations, Aether raises many
questions that could guide future research projects.

Gaussian Mixtures Model. Given appropriate scale, we
have some ideas for future work that could ameliorate the
performance degradation brought forth by a heterogeneous
query distribution. One approach would be to try to learn the
underlying distributions from which the queries are coming.
For example a Gaussian Mixtures Model (GMM) (Reynolds
et al., 2009) could be used to cluster incoming queries into
several distributions. Then for each distribution one Aether
process can be run. This should minimize cache pollution
due to out-of-distribution queries.

Other Indexing Methods. Currently Aether uses IVF for
vector search. However, this framework should be agnostic
to ANN algorithm. One way to improve the generality
of Aether would be to test it with different vector search
strategies such as HNSW (Malkov & Yashunin, 2018).

RAG LLM Integration. Since one of the main applications
of vector search is RAG-enabled LLMs, it would be also
interesting to run some end-to-end experiments on serv-
ing RAGs using Aether to serve vector search. Latency,
throughput, and output accuracy are all relevant metrics to
track.

Integration with Multi-Tier Memory Systems. Another area
that deserves more attention from future work is optimizing
Aether in a multi-tier memory setting either locally, or over
a network. In this case, it is possible that some tiers would
require different promotion and demotion schemes. Since
the goal of this work is to support vector search at arbitrary
scale, it would be interesting to integrate this serving system
with memory hierarchies that are used in and across data
centers. For example, supporting vector search at global
scale would require integration with a Content Delivery
Network (CDN) (Vakali & Pallis, 2003). Alternatively, we
have done some work benchmarking CXL memory which
brings its own challenges and opportunities.

Index File Migration in CXL-enabled Clusters. In Aether,
our primary focus lies in index file migration between
DRAM and Disk. Looking ahead, we aim to extend this
capability to include migration between DRAM and CXL-
attached remote memory. This enhancement promises to ac-
celerate vector search speed compared to swapping between

Aether: Efficient Serving of Large-scale Vector Search with Sharded Indexes

disk and DRAM. Notably, local DRAM indexing achieves
a search speed nearly three times faster than indexing solely
on CXL-attached memory, making Aether’s intelligent in-
dex file placement valuable in multi-tiered memory systems.
For details on the relationship between search speed and
index file location, as well as our progress on multi-tiered
memory system migration, refer to the appendix A.

QoS-aware Vector Search Serving. In this paper, Aether
introduces an innovative intra-batch planning method that
associates each index file with queries, investigating both se-
quential and concurrent search and loading strategies. While
the latter boosts overall speed, it may encounter bandwidth
constraints. Moreover, ensuring Quality of Service (QoS)
in vector search serving based on user priorities is essen-
tial. For details on bandwidth impact on query throughput
and our ongoing work on QoS-aware bandwidth control for
query processes, see appendix B.

6 RELATED WORK

Many ANN algorithms are used to improve vector search
performance. These algorithms typically use one of three
techniques: clustering, hashing, and building searchable
graphs. IVF, as described in Section 1.3 is an example of
a clustering technique. The following is a brief survey of
popular ANN techniques that fall into the other categories.

Locality-Sensitive Hashing (LSH) (Datar et al., 2004) seg-
ments vectors and repeatedly hashes them. Then, two vec-
tors are considered similar provided that these hashes collide
at least once. In this way, vectors can be compared based
on their segments which reduces search time to sublinear.
Hierarchical Navigable Small Worlds (HNSW) (Malkov &
Yashunin, 2018) embeds data points as nodes on several
graphs of increasing complexity that can be searched in a
hierarchical manner. The idea here is similar to that of a
probabilistic skip list. Each layer in the hierarchy can be
greedily searched until a local minimum is reached, until a
vector within acceptable distance from the query vector is
found.

Modern large vector datasets (Jégou et al., 2021) contain
billions of vectors. Storing these massive datasets in DRAM
proves to be highly costly due to their extensive memory
footprint, spanning thousands of GB. To improve scalability,
a hierarchical memory system can be used. One way this can
be achieved is by using a large pool of slower but cheaper
memory (Maruf et al., 2023).

Utilizing Compute Express Link (CXL) enhances server
memory capacity and bandwidth, essential for managing
extensive vector datasets in cloud environments. Addition-
ally, reusing DDR4 memory from decommissioned servers
is currently supported by CXL, which is gaining substantial
attention across industry and academic sectors. Pond (Li

et al., 2023) and TPP (Maruf et al., 2023) both adopt the
CXL standard to optimize memory usage. TPP introduces
an OS-level, application-transparent page placement mech-
anism for CXL-enabled memory, while Pond develops a
CXL-based full-stack memory pool for cloud deployment,
incorporating a prediction model for latency and resource
management at the datacenter scale.

7 CONCLUSION

In this project, we developed a prototype system called
Aether, optimized for vector search across large datasets
with sharded indexes. This system significantly outperforms
naive planning by utilizing asynchronous index loading and
dynamic file management, adaptable to multi-tier memory
systems like CXL-enabled clusters for enhanced scalability.
Comprehensive evaluations demonstrated that S2 with asyn-
chronous I/0O is 19.7% faster than its synchronous version,
and our LFU+ caching policy outperforms LRU by 14.5%.
These improvements highlight the system’s robustness and
efficiency across various workloads and memory conditions,
making it a valuable asset for vector search applications.

REFERENCES

Andoni, A., Indyk, P., and Razenshteyn, I. Approximate
nearest neighbor search in high dimensions, 2018.

Borgeaud, S., Mensch, A., Hoffmann, J., Cai, T., Rutherford,
E., Millican, K., van den Driessche, G., Lespiau, J.-B.,
Damoc, B., Clark, A., de Las Casas, D., Guy, A., Menick,
J., Ring, R., Hennigan, T., Huang, S., Maggiore, L., Jones,
C., Cassirer, A., Brock, A., Paganini, M., Irving, G.,
Vinyals, O., Osindero, S., Simonyan, K., Rae, J. W., Elsen,
E., and Sifre, L. Improving language models by retrieving
from trillions of tokens, 2022.

Bozkurt, A. Unleashing the potential of generative ai, con-
versational agents and chatbots in educational praxis: A
systematic review and bibliometric analysis of genai in
education. Open Praxis, Nov 2023. doi: 10.55982/
openpraxis.15.4.609.

Caldarini, G., Jaf, S., and McGarry, K. A literature sur-
vey of recent advances in chatbots. Information, 13(1),
2022. ISSN 2078-2489. doi: 10.3390/info13010041.
URL https://www.mdpi.com/2078-2489/13/
1/41.

Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S.
Locality-sensitive hashing scheme based on p-stable
distributions. In Proceedings of the Twentieth Annual
Symposium on Computational Geometry, SCG ’04, pp.
253-262, New York, NY, USA, 2004. Association for
Computing Machinery. ISBN 1581138857. doi: 10.

https://www.mdpi.com/2078-2489/13/1/41
https://www.mdpi.com/2078-2489/13/1/41

Aether: Efficient Serving of Large-scale Vector Search with Sharded Indexes

1145/997817.997857. URL https://doi.org/10.
1145/997817.997857.

Douze, M. Indexing 1t vectors, 2020. URL
https://github.com/facebookresearch/
faiss/wiki/Indexing-1T-vectors.

Douze, M., Guzhva, A., Deng, C., Johnson, J., Szilvasy, G.,
Mazaré, P.-E., Lomeli, M., Hosseini, L., and Jégou, H.
The faiss library, 2024.

Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y.,
Sun, J., Wang, M., and Wang, H. Retrieval-augmented
generation for large language models: A survey, 2024.

Huang, Y. and Huang, J. A survey on retrieval-augmented
text generation for large language models, 2024.

Jang, 1., Yang, Z., Zhang, Z., Jin, X., and Chowdhury, M.
Oobleck: Resilient distributed training of large models
using pipeline templates. In Proceedings of the 29th
Symposium on Operating Systems Principles, SOSP *23.
ACM, October 2023. doi: 10.1145/3600006.3613152.
URL http://dx.doi.org/10.1145/3600006.
3613152.

Jiang, Z., Xu, F. F,, Gao, L., Sun, Z., Liu, Q., Dwivedi-Yu,
J., Yang, Y., Callan, J., and Neubig, G. Active retrieval
augmented generation, 2023.

Johnson, J., Douze, M., and Jégou, H. Billion-scale similar-
ity search with gpus, 2017.

Jégou, H., Tavenard, R., Douze, M., and Amsaleg, L.
Searching in one billion vectors: re-rank with source
coding. In ICASSP, 2021.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207-1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., Kiittler, H., Lewis, M., Yih, W.-t., Rocktéschel,
T., Riedel, S., and Kiela, D. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 9459-9474. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
60493230205£f780e1bc26945df7481e5~
Paper.pdf.

Li, H., Berger, D. S., Novakovic, S., Hsu, L., Ernst, D.,
Zardoshti, P, Shah, M., Rajadnya, S., Lee, S., Agarwal,
1., Hill, M. D., Fontoura, M., and Bianchini, R. Pond:
Cxl-based memory pooling systems for cloud platforms.
In ASPLOS, 2023.

Malkov, Y. A. and Yashunin, D. A. Efficient and robust
approximate nearest neighbor search using hierarchical
navigable small world graphs, 2018.

Maruf, H. A., Wang, H., Dhanotia, A., Weiner, J., Agar-
wal, N., Bhattacharya, P., Petersen, C., Chowdhury, M.,
Kanaujia, S., and Chauhan, P. TPP: Transparent page
placement for CXL-enabled tiered memory. In ASPLOS,
2023.

Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M., Socher,
R., Amatriain, X., and Gao, J. Large language models: A
survey, 2024.

OpenAl, e. a. Gpt-4 technical report, 2024. URL https:
//arxiv.org/abs/2303.08774.

Reynolds, D. A. et al. Gaussian mixture models. Encyclo-
pedia of biometrics, 741(659-663), 2009.

Sumers, T. R., Yao, S., Narasimhan, K., and Griffiths, T. L.
Cognitive architectures for language agents, 2024.

Tonmoy, S. M. T. ., Zaman, S. M. M., Jain, V., Rani, A.,
Rawte, V., Chadha, A., and Das, A. A comprehensive
survey of hallucination mitigation techniques in large
language models, 2024.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A,, Lacroix, T., Roziere, B., Goyal, N., Hambro, E.,
Azhar, F.,, Rodriguez, A., Joulin, A., Grave, E., and Lam-
ple, G. Llama: Open and efficient foundation language
models, 2023a.

Touvron, H., Martin, L., and Kevin Stone, e. a. Llama 2:
Open foundation and fine-tuned chat models, 2023b.

Vakali, A. and Pallis, G. Content delivery networks: status
and trends. IEEE Internet Computing, 7(6):68-74, 2003.
doi: 10.1109/MIC.2003.1250586.

Villalobos, P., Sevilla, J., Besiroglu, T., Heim, L., Ho, A.,
and Hobbhahn, M. Machine learning model sizes and the
parameter gap, 2022.

Wang, J., Yi, X., Guo, R., Jin, H., Xu, P, Li, S., Wang, X.,
Guo, X, Li, C., Xu, X., Yu, K., Yuan, Y., Zou, Y., Long,
1., Cai, Y., Li, Z., Zhang, Z., Mo, Y., Gu, J., Jiang, R.,
Wei, Y., and Xie, C. Milvus: A purpose-built vector data
management system. In Proceedings of the 2021 Inter-
national Conference on Management of Data, SIGMOD
21, pp. 2614-2627, New York, NY, USA, 2021. Associa-
tion for Computing Machinery. ISBN 9781450383431.
doi: 10.1145/3448016.3457550. URL https://doi.
org/10.1145/3448016.3457550.

Wang, X., Yan, Y., Huang, L., Zheng, X., and Huang, X.
Hallucination detection for generative large language

https://doi.org/10.1145/997817.997857
https://doi.org/10.1145/997817.997857
https://github.com/facebookresearch/faiss/wiki/Indexing-1T-vectors
https://github.com/facebookresearch/faiss/wiki/Indexing-1T-vectors
http://dx.doi.org/10.1145/3600006.3613152
http://dx.doi.org/10.1145/3600006.3613152
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.1145/3448016.3457550
https://doi.org/10.1145/3448016.3457550

Aether: Efficient Serving of Large-scale Vector Search with Sharded Indexes

models by Bayesian sequential estimation. In Bouamor,
H., Pino, J., and Bali, K. (eds.), Proceedings of the
2023 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 15361-15371, Singapore, Decem-
ber 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.emnlp-main.949. URL https://
aclanthology.org/2023.emnlp-main. 949.

Xu, Z., Jain, S., and Kankanhalli, M. Hallucination is
inevitable: An innate limitation of large language models,
2024.

Ye, H., Liu, T., Zhang, A., Hua, W,, and Jia, W. Cognitive
mirage: A review of hallucinations in large language
models, 2023.

Zhang, Z., Liu, F., Huang, G., Liu, X., and Jin, X. Fast
vector query processing for large datasets beyond
GPU memory with reordered pipelining. In 217st
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 24), pp. 23-40, Santa Clara,
CA, April 2024. USENIX Association. ISBN 978-1-
939133-39-7. URL https://www.usenix.org/
conference/nsdi24/presentation/zhang-
zili-pipelining.

A INDEX FILE MIGRATION BETWEEN CXL
AND LOCAL DRAM

The distribution of index files on CXL and local DRAM can
significantly impact latency as shown in Figure 11, using
Faiss’ exact KNN search method, the speed of placing all
index files on the local DRAM can approach three times
that of placing all index files on the CXL attached memory.
Therefore, optimizing index file allocation and enabling
the promotion and demotion of index files in multi-tiered
memory systems is crucial.

N

w

=y

Throughput (query/s)
N

o

0 20 40 60 80 100
Ratio of Memory on Local DRAM (%)

Figure 11. Ratio of Memory on Local DRAM Influence on
Throughput

Linux handles page migration using the
migrate_pages () function, primarily designed to
migrate only LRU pages. This migration is triggered
when a page accessed by the CPU is not located on the
local NUMA node, leading to NUMA hinting faults.

The LRU mechanism in Linux comprises two lists: the
active_list and the inactive_list. Pages are
initially placed in the inactive_list and, if accessed
frequently, are promoted to the active_list to shield
them from reclamation. Conversely, pages are demoted
back to the inactive_list if the active_list
becomes overpopulated.

To manually migrate the entire index file, we plan to use
the activate_page () function, which transfers a page
from the inactive_list tothe active_list. Addi-
tionally, the /proc/<pid>/numa_maps file, which pro-
vides information on virtual memory address ranges and
page numbers, will be instrumental in managing all page
data for specific index files.

When indexing with Faiss, the index files are initially loaded
and stored in memory as anonymous pages and later stored
as file pages, though infrequently accessed. It is also im-
portant to consider demoting duplicate file pages to remote
memory to enhance system performance. We have already
had the tool to demote memory for specific processes, which
modifies the cgroup to do that.

B QOS AWARE BANDWIDTH CONTROL FOR
VECTOR SEARCH

N

w

-

Throughput (query/s)
N

1 3 4
of Query Processes

o

Figure 12. Number of Query Process Influence on Throughput
120

o 100
80
60
40
20

0

Bandwidth (GB/

1 3 4
of Query Processes

Figure 13. Bandwidth of Multiple Query Processes

In this paper, Aether introduces a novel intra-batch planning
approach that categorizes each index file with queries. We

https://aclanthology.org/2023.emnlp-main.949
https://aclanthology.org/2023.emnlp-main.949
https://www.usenix.org/conference/nsdi24/presentation/zhang-zili-pipelining
https://www.usenix.org/conference/nsdi24/presentation/zhang-zili-pipelining
https://www.usenix.org/conference/nsdi24/presentation/zhang-zili-pipelining

Aether: Efficient Serving of Large-scale Vector Search with Sharded Indexes

explore two strategies: sequentially searching and loading
queries, and concurrently loading and searching multiple in-
dex files. The latter can significantly enhance overall speed.
However, simultaneous multiple query processes can lead
to bandwidth limitations. In Figure 13, running four concur-
rent Faiss’ exact KNN search processes increases bandwidth
usage to 96 GB/s, nearing the machine’s maximum capacity
of 100 GB/s. This causes each process’s throughput to de-
crease to one-third of its individual performance, as shown
in Figure 12, despite no memory or core contention, all
query processes utilize local DRAM. Specifically, running
a single query process allows for a bandwidth of 32 GB/s,
whereas running four processes concurrently reduces each
process’s bandwidth to 24 GB/s, leading to the decrease in
query throughput.

To manage this, we developed a bandwidth control tool
using OS APIs (e.g., cgroup), which is available open-
source at https://github.com/JhengLu/GENATI_
CXL_PLUS/tree/main. In modern cloud environments,
where users may have varying priorities, it is crucial not just
to batch queries by arrival time but also according to user
priorities. Our approach wants to enable simultaneous query
execution while managing bandwidth allocation through our
tool, decreasing the bandwidth allocated to lower-priority
queries to favor higher-priority ones.

https://github.com/JhengLu/GENAI_CXL_PLUS/tree/main
https://github.com/JhengLu/GENAI_CXL_PLUS/tree/main

