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Motivations

Why surface emissivity?

- Surface emissivity (€) is a pivotal factor in the analysis of Earth's radiation budget and
its impact on climate.

- Unobserved far-IR (15-100um) surface emissivity in polar regions impacts simulated
mean-state polar climate; which motivated the Polar Radiant Energy in the Far-
InfraRed Experiment (PREFIRE) mission [1].

What can be improved?

- Existing optimal-estimation (OE)-based methods are computationally intensive and
too slow to keep up with the data stream from the PREFIRE measurements.

Data Collection

Synthetic data
- 6.2 million synthetic clear-sky PREFIRE spectra data were generated using 4 months
of 2005 of ERA-5 6-hourly reanalysis data [2-3] and surface emissivity data [4].
- We focused on estimating the surface spectral emissivities at the 14 PREFIRE
channels (6 in mid-IR and 8 in far-IR).

Train-test split
- 70% training (4,314,437 samples); 30% testing (1,849,045 samples).

Methodology

Channel-wise Neural Networks (NNs) Architecture (2L MLP)

- Input features: 115 (Standardized channel radiance (/) + other standardized
parameters including temperature, water vapor, and ozone profiles at 37 levels,
surface temperature, surface pressure and CO.,)

- Hidden layer #1: 57 neurons => batch normalization => RelL.U activation

- Hidden layer #2: 28 neurons => batch normalization => RelL.U activation

- Output: 1 (Standardized channel emissivity)

Experiment setup (a single NN training takes around 5 hours on CPU)

- Utilizing the Adam optimizer with a 0.0001 learning rate and MSE loss function, we
trained all 14 channel-wise models over 10 epochs.
- Evaluated the predicted emissivity against the established ground truth emissivity.
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Retrieval Performance
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Overall retrieval performance . Conclusion

- Achieved a mean error of 0.0028 with a
standard deviation of 0.0013, comparable
to the OE-based retrieval [2].

Performance under perturbations

- Less than +2.5% prediction changes.
- Changes are consistently centered around
the ground truth emissivity.

Uncertainty estimation given NeSRs (6,)
- Nearly a 1:1 correspondence between the
uncertainty estimated using /, + 6, and

randomly perturbed radiances.

Uncertainty from perturbed /,
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Shapley Value Analysis
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A simple yet effective NN-based approach for estimating mid-infrared and
surface spectral emissivity retrieval

- Achieved a comparable retrieval performance to OE-based methods, with a
computational time saving by a factor of 10°.
- Uncertainty estimation can be done using a two-point average (+0,).
- Shapley value analysis confirms feature contribution to emissivity estimation, aligning
with our physical understanding.
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